برای پیدا کردن اضلاع به کمک نسبت های مثلثاتی حتما باید در شکل مثلث قائم الزاویه داشته باشیم یا اینکه با کشیدن خط های اضافی این مثلث را ایجاد کنیم …
پیدا کردن اضلاع به کمک نسبت های مثلثاتی
برای پیدا کردن اضلاع به کمک نسبت های مثلثاتی حتما باید در شکل مثلث قائم الزاویه داشته باشیم یا اینکه با کشیدن خط های اضافی این مثلث را ایجاد کنیم.
نسبت های مثلثاتی زاویه های ۳۰ و ۴۵ و ۶۰ درجه را باید حفظ کنیم. در جدول زیر اعداد آن ها آمده است.
همانطور که می بینید نسبت های ۴۵ درجه که خیلی ساده هستند. سایر نسبت ها هم دوتا دوتا باهم مساوی اند.
خب برای پیدا کردن اضلاع به کمک نسبت های مثلثاتی باید یک یا چندتا از نسبت های مثلثاتی را برای آن مثلث بنویسیم.
مثال : در شکل زیر اندازه اضلاع مجهول را بدست آورید.
در این مثال زاویه ۳۰ درجه داده شده است. نسبت های مثلثاتی این زاویه را در جدول بالا می بینیم. اضلاع مثلث را می خواهیم نام گذاری کنیم:
- ضلع ۵ سانتی متر : مقابل به زاویه ۳۰ درجه
- ضلع x سانتی متر : مجاور به زاویه ۳۰ درجه
- ضلع y سانتی متر : وتر مثلث
برای پیدا کردن اضلاع به کمک نسبت های مثلثاتی در این مسئله از نسبت تانژانت برای ضلع x و از نسبت سینوس برای ضلع y استفاده می کنیم.
دلیل استفاده از تانژانت این است که طبق تعریف، تانژانت یعنی ضلع مقابل (۵) تقسیم بر ضلع مجاور (x)
دلیل استفاده از سینوس این است که طبق تعریف، سینوس یعنی ضلع مقابل (۵) تقسیم بر وتر مثلث (y)
نکته : بهتر است در استفاده از نسبت های مثلثاتی تا حدامکان از عددهایی که خود مسئله داده استفاده کنیم، نه عددهایی که خودمان بدست آوردیم. چون ممکن است ما اعداد را اشتباه حساب کرده باشیم و باعث اشتباه شدن ادامه حل شود.
نکته : ممکن است در مسئله زاویه های داده شده ، زاویه خاص نباشد و مقدار نسبت های مثلثاتی آن را بلد نباشیم. در این صورت نگران نباشید، خود مسئله باید مقدار آن را به شما بدهد.
درس پیدا کردن اضلاع به کمک نسبت های مثلثاتی را برای شما آموزش دادیم. در درس بعدی روابط بین نسبت های مثلثاتی آموزش داده خواهد شد.
- نسبت های مثلثاتی سینوس ، کسینوس ، تانژانت و کتانژانت
- نمونه سوال ریاضی دهم فصل اول مجموعه ، الگو و دنباله با پاسخ تشریحی
- بازه ها در مجموعه اعداد حقیقی و نمایش آن ها روی محور
- دنباله حسابی – پیداکردن جملات دنباله و جمله عمومی آن
- دنباله هندسی – پیدا کردن جملات دنباله و جمله عمومی آن
- متمم یک مجموعه و بدست آوردن آن با استفاده از مجموعه مرجع
در مثلث قایم الزاویه ای رابطه حسابی وجود دارد محیط مثلث 36 است مساحت آن را بدست آورید
در مثلث قایم الزاویه رابطه حسابی وجود دارد، یعنی اینکه طول اضلاع مثلث قایم الزاویه از رابطه مربوط به دنباله حسابی باید پیروی بکند و باید سه جمله از دنباله حسابی را تشکیل دهد. یعنی این رابطه:
an=a+(n-1)d
که در آن a جمله اول و d قدر نسبت است و an طول ضلع مثلث را نشان میدهد.
پس با عدد گذاری به جای n، سه جمله از این دنباله را انتخاب میکنیم.
n=1 نتیجه میدهد a1=a
n=2 نتیجه میدهد a2=a+d
n=3 نتیجه میدهد a3=a+2d
حالا از فرض اینکه محیط مثلث برابر 36 میباشد استفاده کرده و یک معادله به صورت زیر مینویسیم:
a+a+d+a+2d=36
که نشان میدهد حاصل جمع سه ضلع مثلث به طولهای a و a+d و a+2d باید برابر 36 باشد.
اکنون با ساده کردن معادله داریم:
3a+3d=36
که با تقسیم طرفین به 3 داریم:
a+d=12
اکنون یک معادله بر حسب a و d بدست اوردیم.
اما میدانیم با یک معادله نمیتوان دو مجهول را بدست اورد، بنابراین برای بدست اوردن a و d باید یک معادله دیگر هم داشته باشیم.
با استفاده از رابطه فیثاغورث و قرار دادن اندازه سه ضلع در ان معادله دوم بدست میاید:
a^2+(a+d)^2=(a+2d)^2
حالا دو معادله به صورت زیر داریم:
a+d=12
a^2+(a+d)^2=(a+2d)^2
که با حل آن ها مقادیر a و d بدست میایند.
با نوشتن a برحسب d و جایگذاری آن در معادله دوم داریم:
a+d=12==>a=12-d
i(12-d)^2+(12-d+d)^2=(12-d+2d)^2
i(12-d)^2+(12)^2=(12+d)^2
i12^2-24d+d^2+12^2=12^2+24d+d^2
i12^2-48d=0
i12^2=48d
d=3
با بدست آمدن d=3 میتوان از رابطه اول a را حساب کرد:
a+d=12==>a+3=12==>a=12-3==>a=9
حال با بدست امدن a و d میتوان طول اضلاع را حساب کرد :
a=9
a+d=3+9=12
a+2d=9+2*3=9+6=15
پس طول اضلاع به ترتیب برابر است با 9 و 12 و 15
علامت ^ در معادلات یعنی به توان. مثلا a^2 یعنی a به توان 2
i در معادلات اشتباده تایپی است.
با تشکر از پاسخ asd
اگه میتونید به راه ارتباطی به ما بدید که با شما در تماس باشیم.
ممنون عالی بود ازتون تشکر فراوانی می کنم
مرسی
سلام چه موقع درمسیله ها ازبکی از نسبتهای مثلثاتی استفاده می کنیم
عالی بود
ممنون بسیار عالی و کامل و جامع بود👍🏼👍🏼
نکاتش واقعا مفید بود واسم تشکر فراوان
خوب و عالی
بسیار عالی و واضح درس داده اید سپاس
عالی ما شاع الله
ممنون
واقعا مطالب عالی و مفید بود ممنون دستتون درد نکنه خسته نباشید سپاس گزارم 😘😘😘😍😍🌹🌹🌹